
35/ The UK Oracle User Group Journal / Issue 20 Winter 2004 Oracle Scene

business and management

Extreme Architecture -
Part 2*, Architecture Components
By Phil Robinson, Lonsdale Systems, and Floris Gout, Independent Consultant
*part 1 was printed in Oracle Scene, Issue 19, Autumn 2004

Phil Robinson and Floris Gout have been

consultants to a number of organisations

and across a range of industry sectors.

They have worked together on various

IT-related planning projects. This paper is

a major collaborative effort that organises

not just the ideas of the two authors but

also those of the many inspiring people

they have worked with.

The IT Architecture Papers
IT groups have a pressing need to identify

those things worthy of their attention.

In this series of three papers, we present

an Information Technology (IT)

Architecture framework that draws

inspiration from legislation, enacted in

1996. The papers encourage a minimalist

approach to IT Architecture by exploring

a number of extreme points of view.

In the previous article, we offered a

comparison between buildings, the

traditional roots of architecture, and the

more complex world of business and

software systems. During the discussion

we introduced the basic building blocks of

our architecture framework.

In this article, the complete IT Architecture

framework is presented as a single,

uncluttered diagram. This approach

reflects our belief that the framework is

simple to describe and easy to recall.

However, the diagram is not trivial. lt

includes nineteen different elements that,

taken together define an IT architecture.

The third article in the series will describe

how the framework is actually used. We

will also describe how our ideas are

related to other ideas, methods and

models. Using the framework, an IT

Architecture can either be fully defined

in single planning project, or gradually

fleshed out over a period of time. We hope

that the framework will provide a point

of reference for business areas supported

by IT, IT management, IT project

managers, developers and operations

staff, frequently charged to do more with

less in these lean times. These groups may

find that the framework offers them a

much-needed lifeline.

Flashback!
In the previous article, we used the

metaphors of cathedral and shanty towns

to discuss the extremes of perfection

and chaos in IT systems. We implied a

comparison between building, an activity

undertaken by humankind for several

millennia, and software systems

development, something that has only

been performed for the last few decades.

We highlighted the differences between

human activity systems and software

systems and classified these systems (and

their sub-systems) into a hierarchy. We

noted that, although the hierarchy is a

convenient way of classifying systems, the

true nature of business and software systems

is to be independent and overlapping.

This led to the notion of interoperability

as one of the key architectural issues.

Interoperability can be defined as:

‘…the ability of a system to successfully

interact with other, specified systems.’ 1

Drawing once again on the building

metaphor, we attempted to define

architecture. In doing so, we referred to a

formal definition of IT architecture found

in legislation passed by the US Congress;

the Information Technology Management

Reform Act of 1996 also known as the

Clinger-Cohen Act,

‘An integrated framework for evolving

or maintaining existing information

technology and acquiring new

information technology to achieve the

agency’s strategic goals and information

resource management goals.’

The Extreme Architecture
Framework
It is now time to introduce the framework.

As we have already stated, the framework,

is based on a matrix as shown in Figure 1.

We chose this format because the Zachman

Framework has demonstrated the

simplicity and universal appeal of

presenting an architecture framework as a

matrix. The rows of the matrix are labelled

with the five overlapping, independent

types of system. The columns of the matrix

are labelled with the five sub-architectures

of the Enterprise Architecture. These were

described in Part 1.

The individual cells of the matrix are used to

organise architectural content. For example:

• The cell at the intersection of the Sector

row and the Activity column contains

content that describes the activities

performed within an industry sector.

• The cell at the intersection of the

Process row and Data column contains

content that describes the data

associated with a business process.

• The cell at the intersection of the

Application row and Software column

contains content that describes the

requirements for an individual

software application.

• …and so on.

36 Oracle Scene Issue 20 Winter 2004 / The UK Oracle User Group Journal /

Fig. 1: Extreme Architecture Framework

The content of each individual cell is

further classified by a number of

architectural Elements. These Elements

refine the coarser classification scheme

provided by the rows and columns of the

matrix. They also offer a comprehensive

checklist for architecture content.

Architecture Elements
Figure 2 below shows the architecture

framework complete with the nineteen

architectural Elements. Notice how some of

the cells have been grouped together where

they share similar content across a number

of rows of columns. The most obvious

examples are the grouping of Sector,

Enterprise and Process into a single row and

the grouping of the Technology column into

a single cell. The completed framework is

followed by a brief tour that introduces each

of the architectural Elements.

Fig. 2: Full Framework Contents

• Activities - describe the business

activities performed within a sector,

enterprise or business process.

• Workflows - describe the flow of

physical objects and information

between the business activities.

• Subject Areas - classify and group

Information Requirements having a

common theme, Subject Areas can also

be used to group Businesses Objects

and Storage Requirements. A database2

is a special case of subject area that can

actually be implemented and deployed.

• Information Requirements - identify

and describe the information required

in order to successfully perform an

activity as well as any information that

is generated as a result of performing

the activity.

• Functional Areas - used to classify

and group Functional Requirements

having a common purpose. Functional

Areas can also be used to group Non-

functional Requirements, Interface

Requirements, Use Cases and Test

Cases. An application is a special case

of a Functional Area that can actually

be implemented and deployed.

• Business Objects3 - represent the

concepts of interest within the Sector,

Enterprise or Process. Concepts of

interest include business-related events

and time periods; the roles of people,

organisations, places and things; the

actual people, organisations, places

and things; and classifications of any

of the above.

• Use Cases - describe the usage of a

software application by identifying

interactions between the user and the

software. Each step in the interaction

either provides some direct value to the

user of the application or indirect

value to the application’s stakeholders.

Use case steps provide value by

validating business rules, permanently

storing data or providing information

to the user.

• Interface Requirements - a special type

of Information Requirement that

provides a detailed description of

either a user or software interface.

Interface Requirements should include

a full definition for each data element

included in the interface.

• Functional Requirements - describes

the mandatory capabilities, actions

and behaviour of a proposed software

application.

• Non-Functional Requirements -

describes the requirements of a

proposed software application that are

not related to its capabilities, actions

or behaviour. These requirements

include areas such as the quality of

service provided by the application;

external constraints associated with

the environment in which the

application is deployed; requirements

associated with the life-cycle of the

application; and design guidelines that

should be considered during the

development of the application.

• Storage Requirements - a special type

of Business Object that describes data

that will be permanently stored.

Storage Requirements should include a

full definition for each of the attributes

of all the Business Object.

• User Interfaces – the physical screens

reports and web pages that the user

interacts with.

• Architecture - various high-level views

of a software system that describe its

underlying conceptual organisation,

A
ct

iv
it

y

In
fo

rm
at

io
n

So
ft

w
ar

e

D
at

a

Te
ch

no
lo

gy

Sector

Enterprise

Process

Application

Component

37/ The UK Oracle User Group Journal / Issue 20 Winter 2004 Oracle Scene

the modules from which it is

constructed, the organisation of the

source code and the run-time

deployment of the software.

• Code - the human readable source code

that defines the software and the

binary code which is executed by a

computer.

• Test Cases - specific ways of executing

software that is designed to identify

errors and validate requirements.

• Schemas - defines an electronic

data store in terms of the records

(or tables) and the relationships

between the records.

• Networks - the mechanisms that are

used to interconnect hardware and

software platforms to permit the

transfer of data and invoking of

remote services.

• Platforms - the hardware and

software required to execute a

software application.

• Frameworks – standard component

models or reference software

architectures such as J2EE or .Net.

Types of Architecture
Content
The architecture framework consisting of

the matrix and architecture Elements

provides a classification scheme for

architecture content. In an actual

architecture based on the framework, the

body of the matrix may contain a variety of

different types of content. For example the

architectural content might consist of (but

is not restricted to) any of the following:

• A model, list or definition of any of the

actual architectural Elements. For

example, a list of the core business

processes performed by an enterprise;

a list of key business objects that are

relevant to a sector; or a data model

for a software application.

• An assessment or SWOT analysis of

the current state of an architectural

Element. For example, an assessment

of data quality associated with a

database; or a SWOT analysis of the

user interface of an application.

Assessments might also refer to

potential risks and rewards associated

with the current state of the element.

• A potential risk associated with an

architectural Element. For example,

low customer satisfaction associated

with a complex business process.

• A potential reward associated with an

architectural Element. For example, a

reduction in procurement costs

associated with effective data

interchange with suppliers.

• A vision of some desirable, future state

of the architectural Element. The vision

should describe architectural elements

that will contribute to business

strategies and goals. For example,

a vision that data will be seamlessly

transferred between business processes.

• A strategy or course of action to

achieve the future state of the

architectural Element. For example,

a strategy for Functional Areas maybe

to create a ‘spoke and hub’ application

architecture in order to transfer data

between applications, to support the

seamless transfer of data between

business processes.

• An underlying principle associated

with an architectural Element.

A principle is a short statement that

guides or constrains some aspect of the

architectural element. For example,

the principles of minimising data

redundancy and duplication or the

principle of data entry at the point

of data capture.

Principles tend to define fundamental

aspects of an architecture that are

infrequently changed or amended.

Principles that actually guide the

development and implementation of

the architecture can also be defined.

So what! Who cares?
In summarising our discussion of Reims

cathedral and shanty towns, we boldly

stated that our inclination was to follow

a middle path. How then, can this

inclination be reconciled with the title

of this paper – extreme architecture?

Firstly, we believe that the discipline of

architecture is in constant danger of being

hijacked by fanatics. With the

perfectionist cathedral builders and the

builders of chaotic shanty towns eyeing

each other up across an uneasy dividing

line, adopting a middle path is of itself

an extreme point of view. However, we

emphasise that following the middle path

is not the same as sitting on the fence.

We believe our position is best illustrated

by introducing a third building metaphor

– the suburban house. When the image of

a typical suburban house is placed

between the extremes of Reims and a

shanty town, it becomes quite obvious

that there is in fact, a very attractive

alternative to the two extremes.

We argue that in most cases, the self-

reliance, affordability and pragmatism of

the suburban house has a much greater

appeal to most when it is compared with

the abundance, privilege and order of

Reims or the disenfranchisement, poverty

and chaos found in a shanty town.

As well as being extreme by avoiding

the two extremes, we argue that our

framework is extreme because it

exaggerates the best aspects of other

architecture frameworks. Specifically

our framework:

• Is easy to describe. The framework is

based on a simple five by five matrix.

The body of the matrix is populated

with just nineteen architectural

elements. We like to describe the

framework with a single, colourful

reference card that we distribute –

everyone seems to want one.

In contrast, many architecture

frameworks are complex and difficult

to describe. For example, the

documentation for TOGAF Version 8

is 313 pages while the TAFIM

documentation runs to eight separate

volumes. Try grabbing people’s

interest with those!

38 Oracle Scene Issue 20 Winter 2004 / The UK Oracle User Group Journal /

• Encourages an agile approach to

architectural work products. Each of

the 19 architectural elements can be

described using a simple bullet-point

list or a detailed UML model as well as

many other possibilities in between.

In contrast, many architecture

frameworks advocate the creation of a

large number of elaborate and detailed

models. For example, the Zachman

Framework identifies no less than 36

primitive models.

• Unifies a number of disparate

disciplines. We know of architecture

groups that work in splendid isolation.

Their elaborate models never make one

iota of difference to the business

managers, business analysts, software

developers or IT infrastructure groups.

In our framework, the 19 architectural

elements can be grouped into four

different areas. Each area is focused on

a particular group but retains the

context of its relationship to the other

elements. The areas are:

• Business modelling.

• Requirements definition.

• Software construction.

• IT infrastructure management.

• Offers a simple, consistent view to

the various parties involved in the

management of IT resources. This

encourages shared understanding

between IT groups and their clients by

presenting an area of common ground

that can be understood by everyone.

This leads to increased participation

and ownership by all parties.

In contrast, some frameworks organise

models according to various roles and

disciplines. This tends to encourage

redundant descriptions of architectural

elements at different levels of detail.

For example, the Zachman Framework

answers the questions what, why, when,

how, where, and who from the perspective

of five different roles.

The framework can provide a means to

explicitly acknowledge the responsibility

that some groups have for certain

architectural elements. From the

opposite perspective, it also serves as an

encouragement for people to acknowledge

the responsibility that others have for

architectural elements.

So in this article we have presented our

framework, which we use to undertake

our consulting assignments. The benefits

have been stated; simple and easy to

describe, as well as unifying disciplines

and easing communications between

groups. The framework is used as the

basis for creating work products at each

stage of the development lifecycle. In our

next article we will draw together other

ideas and show how this framework can

work in harmony with concepts of

business planning and project

management. This will be featured in

a future issue of Oracle Scene, and/or

in the library on the UKOUG web site at

http://www.ukoug.org/lib/

1 The Open Group Architecture Framework

(TOGAF), Version 8, ‘Enterprise Edition’,

2002, The Open Group Available at

http://www.opengroup.org/products/

publications/catalog/i912.htm

2 Terms used in the database world can be mapped

to those used in the framework. A logical data

model is equivalent to the Business Objects.

A physical data model (or database design) is

equivalent to Storage Requirements. Data

Manipulation language (DML) is Code. Data

Definition language (DDL) defines a database

Schema. A DBMS such as Oracle is Technology.

3 Strictly speaking, the objects of object-

orientation have relevance in three places in the

framework; the persistent Business Objects

described here belong in the Data column;

business objects that have behaviour (as well as

state) belong in the Activity column (we actually

don’t recommend that activities are modelled in

this way but some users of the framework may

prefer this approach); and software classes and

components belong in the Component row.

About the Authors
Floris Gout gained his Bachelor of

Applied Science (Information Science) at

Edith Cowan University in Perth,

Australia. Whilst studying at ECU he

worked at the University of Western

Australia, building research databases for

epidemiological studies. Floris was then

employed at the Department of Justice

from 1991 till 1999. He became Data

Administrator and was Project Manager

for its first data warehouse. Floris has

been an independent contractor since

1999 and he is still enjoying new and

creative challenges. He can be contacted

at floris@floris.com.au

Phil Robinson has been involved in the

planning, analysis and implementation of a

diverse range of business, scientific and

technical information systems. Phil is an

experienced workshop facilitator and has

led numerous workshops in the course

of his consulting assignments. Phil

has presented training courses for

organisations in Australia, Thailand, Hong

Kong, Singapore and Indonesia. As well

as presenting courses, Phil has authored

numerous courses for industry and three

University units. He has also had two

books published on programming Apple

computers. The books were published in a

number of countries including the USA,

UK and as translations in Germany and

France. More recently, he co-authored two

award-winning articles describing an

original organisational theory. He can be

contact at Lonsdale@iinet.net.au

This paper represents a major collaborative

effort that organises not just the ideas of

the two authors but also the many inspiring

people they have worked with.

This article was originally printed in the

AUSOUG’s Foresight magazine.

