
The Triangular Life Cycle Model
Phil Robinson, lonsdale@iinet.net.au

Lonsdale Systems, www.lonsdalesystems.com

Abstract
Everyone knows that the waterfall life cycle model suffers from a number of problems but in
spite of this, it continues to be the most widely used life cycle model. This paper argues that
many of these problems stem from project management best practices that are inappropriately
applied in the waterfall model.
A different life cycle approach is proposed that emphasises the product life cycle rather than the
project life cycle, quality management priorities rather than project management priorities and
views of quality rather than views of the project schedule.

A quality management tool based on different views of quality is used to identify the gaps that
inevitably exist between a user’s needs, the requirements specification and the product that is
delivered. This is followed by a brief discussion of how these gap can be closed.

The paper concludes by pointing out that the Triangular Life Cycle Model can peacefully coexist
with project management best practices but will provide some balance to the dominant project
priorities of staying on schedule and within budget.

The waterfall life cycle model
The waterfall life cycle model is the best known and most
widely used life cycle model. A recent survey found that
more than a third of organisations still base their software
development life cycle on the waterfall model [Lap08].

The introduction of the waterfall life cycle model is
frequently attributed to Winston Royce [Roy70].
Interestingly, “waterfall life cycle model” is never
mentioned in the Royce’s article. In fact, he seems to argue
for a more iterative approach to software development!

So it would seem that the waterfall lifecycle model is rather
like an “urban myth” [Wik08] everyone claims to know its
source but it does not stand up to a close examination of the
facts.

One possibility source of the term “waterfall” is the
typographic layout of the diagrams in Royce’s paper, which
seem to suggest a waterfall.

Figure 1: The original waterfall?

Another possibility is that the waterfall life cycle model is
simply another way of describing project management
practices.

Project priorities
The definitive guide to project management best practice is
the PMBOK standard [PMBOK00]. PMBOK identifies 44
best practice project management processes, which are
organised into nine knowledge areas. The knowledge areas
cover topics such as the management of human resources,
communication, risk and procurement in a project context.

But for most project managers the four areas that are
uppermost in their minds are time, cost, scope and quality.

Project
Management

Time
Management

Cost
Management

Scope
Management

Quality
Management

Project
Management

Time
Management

Time
Management

Cost
Management

Cost
Management

Scope
Management

Scope
Management

Quality
Management

Quality
Management

Figure 2: Project management priorities

It would be a most unusual project sponsor that did not
prioritise these areas into the following order:

1. time;

2. cost;

3. scope; and

4. quality.

Phil Robinson The Triangular Life Cycle Model

- 2 -

The project life cycle
PMBOK stresses the temporary nature of projects and
project teams:

A project is a temporary undertaking to create a
unique product or service.

The project team, as a working unit seldom outlives
the project - a team created for the sole purpose of
performing the project will perform that project and
then the team is disbanded and the team members
reassigned when the project ends.

It also highlights the differences between projects and
operations:

The purpose of a project is to attain its objective and
then terminate

The objective of an ongoing operation is to sustain the
business

PMBOK defines a project life cycle model that classifies
the activities of a project into a number of phases:

The project life cycle defines the phases that connect
the beginning of a project to its end.

The completion and approval of one or more
deliverables characterises a project phase.

Phases are generally sequential and are usually
defined by some form of technical information transfer
or technical component handoff.

The phases include an initial phase, a number of
intermediate phases and a final phase. One of the
objectives of the final phase is the closure of the project:

… includes the processes used to formally terminate
all activities of a project …

…hand off the completed product to others…

Software projects
For many categories of project, a life cycle that comes to a
final end makes sense. It is true; that once a building project
is finished there is little more to do other than move the
new occupants into the building. If the project has
remained on schedule and within the budget, the project
manager will most likely receive well-deserved praise. The
project team will either be disbanded or move on to new
projects.

While a “temporary undertaking” may be suitable for
producing the products of many industries, software
products are frequently refined and enhanced throughout
their lifetime. It is quite common for teams of developers
to work on a single software product for years (or possibly
decades).

Many software products play a crucial role in “sustaining
the business” either as products in their own right,
embedded in hardware products or by supporting business
processes. This means that the “final phase” is only
reached when a software product is eventually retired.

Nowhere is the influence of the project life cycle more
detrimental than in its insistence on the “sequential”
organisation of project phases. For software projects, this is
normally interpreted as the need to organise project activity

around deliverables such as requirements specifications,
designs, test plans and program code. The deliverables
must be approved and handed off before the next phase can
commence.

This means that requirements specification must be
complete before design activities can commence, the
product design must be complete before coding can
commence and coding must be complete before testing can
commence.

It is the last of these prerequisites that leads to yet another
shortcoming of the waterfall life cycle – testing comes at
the end of a project when it is also most expensive to
correct any errors found in the product.

This shortcoming is often magnified by slippage in the
project schedule. Slippage is more critical towards the end
of a project. This means that for many projects, software
testing is conducted in an atmosphere of intense pressure to
“get it done” as quickly as possible.

It is common to cut short the time allocated to testing in
order to achieve project deadlines. Frequently project
managers can be heard complaining that, “The project was
going well until it got held up in testing”.

Poor planning of test activities can magnify the problem.
Testing is often represented in the project plan by a single
activity called “testing” when it should in fact be shown as
two quite different activities:

• a testing activity with the goal of identify failures;
and

• a repair activity with the goal of removing product
defects that cause the failures.

With this in mind, it would probably be more appropriate
for project managers to complain that, “The project was
going well until it got held up in repair”!

One of the objectives a project manager must achieve
before the closure of the project is acceptance of the
product – this often leads to pressure on the stakeholders to
accept the product irrespective of whether it properly meets
their needs.

The well-known CHAOS report [Sta95] was one of the first
surveys of software project failures. Its widely quoted
findings include the mind-boggling facts that:

• 31.1% of projects were cancelled before they ever
get completed;

• 52.7% of projects cost over 189% of their original
estimates (most of this cost overrun is surely
attributed to rework);

• at the time of the study American companies and
government agencies spent $81 billion for
cancelled software projects; and

• $59 billion for software projects that were
completed, but will exceed their original time
estimates.

It is easy to blame project managers and their project teams
for these disastrous failures but it is important to remember
that often it is the project sponsor in conjunction with the
stakeholders that:

Phil Robinson The Triangular Life Cycle Model

- 3 -

• dictate the schedule;

• allocate the budget; and

• define (and nearly always expand) the scope.

It is not suspiring that Ed Yourdon describes such projects
that are set up to fail from the very beginning as “death
march projects” [Yor97]. Yourdon defines a “death march
project” as one that is allocated a schedule or budget that is
less than 50% of a rational estimate. It is frightening to
compare the CHAOS findings, that more that half of the
projects surveyed exceeded their original estimates by
nearly 200%, with Yourdon’s definition of a “death march
project”. The comparison suggests that more than half of
all software projects are in fact “death march projects”!

The Triangular Life Cycle Model
Many of the problems described above are well known.
Over the years, refinements to the waterfall model have
been proposed and alternative life cycle models suggested.

While there is always a lot of interest in improving on the
waterfall model, many organisations are found lacking
when it comes to actually implementing improvements
(Lap08). It is possible that one of the reasons for this could
be that many of the alternative approaches are based on
elaborate concepts and sometimes accompanied by an all-
embracing ideology. This can make them difficult for more
outcomes-focussed project managers to accept.

With this firmly in mind; the Triangular Life Cycle Model
(TLCM) starts from the highly successful consultant’s
premise that everyone understands a triangle! Reflecting
the three sides of a triangle, it is based on three fundamental
principles:

• emphasise the product life cycle rather than the
project life cycle;

• emphasise quality management priorities rather
than project management priorities; and

• emphasise views of quality rather than views of
the project schedule.

Product life cycle
The product life cycle commences with the needs, wants
and expectations of its users. These are captured as the
product requirements on which the development of the
product is based.

Needs
Wants

Expectations

Needs
Wants

Expectations

Product Product

O
pp

or
tu

ni
ty

O
pp

or
tu

ni
ty

Re
qu

ir
em

en
t

Re
qu

ir
em

en
t

Figure 3: The product life cycle

Once it is put into operation, the users will identify
opportunities for the product’s enhancement and
refinement. These opportunities lead to a revised set of
user needs, wants and expectations. These in turn lead to a
new set of requirements and ultimately a new version of the
product.

For software products, this cycle of revised needs leading to
product upgrades can go on for decades with the same core
team responsible for ongoing development of the product
over this time. In fact, it can be argued that the product life
cycle has more in common with the on-going nature of a
process rather than the “temporary” nature of a project.

Frustrated by the inconsistencies between the project and
product life cycles, some software developers have turned
to the Japanese concept of “wabi-sabi” in search of a better
model for software development. Wabi-sabi is an aesthetic
principle based on the acceptance of transience – “nothing
lasts, nothing is finished, nothing is perfect” [Pow04].

Another area of difference between the product and project
life cycles is the measure of success. For the product life
cycle, success is measured by how well the final product
meets it user’s needs, in other words by quality and scope.
In contrast, success for the project life cycle emphasises
time and cost.

Quality management priorities
The quality management order of priorities is the inverse of
those for project management:

1. quality;

2. scope;

3. cost; and

4. time.

The reason for quality’s place at the top of the list is self-
evident. Scope is the second item because “a product's
ability to satisfy its user's needs” is a fundamental measure
of quality and also the product life cycle measure of
success. Cost appears before time because the “cost of
quality” is a well-defined concept [AS 2561] that measures
both the cost of poor quality and the cost of achieving good
quality.

However the placement of time at the bottom of the list
does not mean that it is unimportant but rather that from a
quality perspective, it is less important than the other
priorities.

Views of quality
It is not surprising that Gant charts are the universal tool for
planning and monitoring projects. Gant chats use
horizontal bars to represent time, which is the first project
priority. To emphasise quality’s position as the first
priority in the TLCM, a similar universal tool is required.
David Garvin’s views of quality [Gar84] provide an
excellent starting point for developing such a tool:

Garvin identifies five views of quality:

• Transcendental – this view of quality associates
quality with “innate excellence” that is “absolute
and universally recognizable”. This view is useful
for marketing products or establishing brands but

Phil Robinson The Triangular Life Cycle Model

- 4 -

because of its subjective nature, not so useful for
quality improvement.

• User – this view of quality focuses on the ability
of a product to satisfy the needs of its users.

• Manufacturer – this view associates quality with
“conformance to (engineering and manufacturing)
requirements”. It focuses on how well a product
conforms to its specification.

• Product – this view of quality associates quality
with product characteristics that can be measured
using “a precise and measurable variable”. It
focuses on measurable attributes of a product1.

• Value – this view of quality measures quality “in
terms of costs and prices…”. A quality product is
one that provides performance at an acceptable
price or conformance at an acceptable cost.

Three of these views have been selected as the basis for the
quality tool:

• the user’s view which is represented by the user’s
needs;

• the manufacturer’s (software developer) view
which is represented by the requirements
specification; and

• the product view.

Need Spec

Product

Need Spec

Product

Figure 4: The quality triangle

The value view of quality is implied by the user’s needs,
which include the price they are prepared to pay for the
product and the manufacturers view, which includes the
cost of developing the product. The transcendental view of
quality is probably best left to the marketing department.

Except in the case of an imaginary “perfect” product, it is
unlikely that the stakeholder needs, the specification and
the final product will all be in perfect alignment. This will
lead to discrepancies or “gaps” between the user,
manufacturer and product views of quality.

The gaps between the three views of quality can be
represented by a triangle with one of the views placed at
each corner of the triangle.

1 See ISO 9126-1:2001 product quality standard that describes
measurable attributes of software products.

• The need-specification gap represents how well
the specification describes the user's needs.

• The specification-product gap represents how well
the product conforms to its specification.

• The product-need gap represents how well the
final product satisfies the user's needs.

The length of the sides represents the magnitude of the gap
between the views. The length of any side of a triangle
always depends on the length of the other two sides. This
means that the magnitude of the product-need gap
experienced by the users of the product will always depend
on the magnitude of the need-specification and
specification-product gaps. In other words, there are two
different scenarios that can result in a product ultimately
not meeting the needs of its user:

• a poor understanding of the user’s needs which
results in a need-specification gap; or

• a not following the specification which results in a
specification-product gap.

Six Sigma is a widely used business improvement strategy
that describes these scenarios using two metaphors – “the
voice of the customer” to and the “voice of the process”
[Geo04].

“Gap”

“G
ap

”

Figure 5: Gaps between the views of quality

Users of software products often have difficulty articulating
their needs and providing feedback on requirements
specifications. The result is often numerous changes to the
software product when the users see it for the first time and
realise that it is not what they require.

Barry Boehm has described this as the, “I’ll Know It When
I See It” (IKIWISI) phenomenon [Boe99].

Need Spec

Product

Need Spec

Product

Operation

Dep
loym

en
t

Construction

De
si

gn

Requirements

Wabi-Sabi

Voice of the customer

Voice of the process

IK
IW

IS
I

Figure 6: The Triangular Life Cycle Model

Phil Robinson The Triangular Life Cycle Model

- 5 -

Although time appears as the last priority in the TLCM, it is
obviously still a critical factor. Time is added to the quality
triangle by superimposing a number of sequential life cycle
stages onto the triangle. To align properly with the views
of quality and the gaps between them, the life cycle stages
are arranged into a circle – this also reflects the cyclic
nature of the product life cycle.

The Requirements stage of the life cycle contribute to the
need-specification gap, while Design and Construction
stages contribute to the specification-product gap. The
magnitude of the product-need gap is determined during the
Deployment stage and is experienced by the users during
the Operation stage.

The role of verification and validation
The terms “verification” and “validation” can be confusing.
They are frequently used inconsistently. For example,
PMBOK’s definition of verification is as follows:

Scope verification is the process of obtaining the
stakeholder’s formal acceptance of the completed
project scope and associated deliverables.

Scope verification differs from quality control in that
scope verification is primarily concerned with the
acceptance of the deliverables…

In contrast, Barry Boehm [Boe79] describes verification
and validation as:

…verification involves the comparison between the
requirements baseline and the successive refinements
descending from it – the product design, detailed
design, code, data base, and documentation – in order
to keep these refinements consistent with the
requirements baseline.

…validation identifies problems which must be
resolved by a change of the requirements
specification.

Need Spec

Product

Need Spec

Product

Validation
Are we building
the correct
product?

Validation
Are we building
the correct
product?

Verification
Are we building

the product
correctly?

Verification
Are we building

the product
correctly?

Figure 7: Verification and validation

Since changes to a project’s scope would require changes to
the requirements specification, the PMBOK view of
verification would in fact be regarded as validation
according to Barry Boehm’s definition!

The TLCM provides an opportunity to clarify the role of
verification and validation.

Validation is represented on the triangle in two places:

between the user’s need and the specification; and

between the product and the user’s need.

In both cases, validation answers the question – are we
building/have we built the correct product?

Verification is shown on the remaining side of the triangle
between the specification and the product. It answers the
question – are we building the product correctly?

Closing the gaps with verification
Verification is a technique for closing the specification-
product gap during the Design and Construction stages of
the life cycle. It achieves this by identifying discrepancies
between the product and the specification. The
discrepancies can then be corrected before construction of
the product is completed.

As well as the final product, there are many interim work
products that need to be developed during the life cycle.
Many of these work products are documents such as
architectural designs, detailed designs or test plans. Interim
work products such as these can be verified against the
work products from which they are derived. For example, a
test plan could be verified against a detailed design
document, an architectural design document as well as the
requirements specification.

Testing is one of the techniques that can be used for
verification. Testing is defined as:

…the process of exercising software to verify that it
satisfies specified requirements; and to detect errors
[Glo08].

Traditionally there are three different levels of testing
performed during the Construction phase of the life cycle:

Component testing – the testing of individual software
components. (Glo08)

Integration testing – testing performed to expose faults
in the interfaces and in the interaction between
integrated components. (Glo08)

System testing – the process of testing an integrated
system to verify that it meets specified requirements.
(Glo08)

Unit testing

Integration testing

System testing

Source code
review

Need Spec

Product

Need Spec

Product

Design review

Architecture
review

Figure 8: Closing the gaps with verification

Phil Robinson The Triangular Life Cycle Model

- 6 -

All levels of testing can be used for verification, even
though the definition for system testing is the only one that
explicitly mentions verification. For example, integration
testing can be used to verify the product against the system
architecture and component testing can be used to verify
components against detailed designs.

There are numerous work products that cannot be tested
because they cannot be “exercised” (executed). For
example, it is not possible to exercise documents, models or
source code.

Reviews are a means of verifying work products that cannot
be exercised. The IEEE standard for software reviews
[IEEE1028] describes four types of review that can be used
for verification:

Technical reviews – a systematic evaluation of a
software product by a team of qualified personnel that
examines the suitability of the software product for its
intended use and identifies discrepancies from
specifications and standards.

Inspections – a visual examination of a software
product to detect and identify software anomalies,
including errors and deviations from standards and
specifications.

Walk-throughs – a static analysis technique in which a
designer or programmer leads members of the
development team and other interested parties
through a software product, and the participants ask
questions and make comments about possible errors,
violation of development standards, and other
problems.

Audits – an independent examination of a software
product, software process, or set of software
processes to assess compliance with specifications,
standards, contractual agreements, or other criteria.

Closing the gaps with validation
Validation appears twice in the TLCM. Requirements
validation takes place during the Requirements stage of the
life cycle and is a technique for closing the need-
specification gap. It achieves this by ensuring that the
specification accurately describes the user’s needs, wants
and expectations.

Product validation takes place during the Deployment and
Operation stages of the life cycle but it can only be used to
measure the magnitude of the product-need gap. At these
late stages of the life cycle, backtracking and rework will be
required to actually close the gap. Product validation
determines how well the completed product satisfies the
user’s needs.

Requirements validation
There are many different techniques that can be used for
requirements validation. Four of the more popular
techniques are:

• workshops;

• modelling;

• prototypes; and

• stakeholder reviews.

Workshops are good technique for ensuring stakeholder
participation and resolving conflicting requirements.
Workshops must have clear objectives and will require an
experienced workshop facilitator who is responsible for
ensuring that the workshop achieves its objectives.

Workshops Stakeholder
reviewPrototypes

Modelling
Need Spec

Product

Need Spec

Product

Figure 9: Closing the gaps with requirements validation

Workshops are superior to interviews as a means of
gathering information because they provide an opportunity
to resolve conflicting and inconsistent requirements. Often,
workshop participants are able to describe a more coherent
set of requirements by working as a team. However, the
success of a workshop depends to a great extent, on the
skills of the facilitator.

Natural language is inherently ambiguous. This makes it a
poor choice for the precise description of requirements. In
contrast, diagrams and models have the ability to describe
requirements with less ambiguity. Diagrams and models
are often more compact, easier to change and better at
enforcing consistency than natural language. Modelling
standards such as the UML [UML07] have further
enhanced the clarity of diagrams and models.

The IKIWISI phenomenon means that users frequently
have problems articulating their needs and reviewing
formal requirements specifications.

Prototypes are a way to address the IKIWIS phenomenon.
A prototype is a working model of the final product that can
be demonstrated to (or possibly used by) stakeholders.
Stakeholder feedback on the prototype can be incorporated
into the final specification.

Stakeholder reviews are a type of technical review that
includes participation by the stakeholders. They provide an
opportunity for the stakeholders to provide feedback on the
specification and ultimately confirm that it will serve as a
reasonable basis for the development of the product.

Product validation
Testing is the most common technique used for product
validation. While there can be many types of validation
testing, acceptance testing is the type most commonly
encountered.

Acceptance testing – formal testing conducted to
enable a user, customer, or other authorized entity to
determine whether to accept a system or component
(Glo08).

Phil Robinson The Triangular Life Cycle Model

- 7 -

Because acceptance testing can only measure the magnitude
of the product-need gap, it is best viewed as an important
life cycle milestone rather than as a technique for closing
the gaps of the quality triangle.

Post
implementation

review

Need Spec

Product

Need Spec

Product
Acceptance testing

Operational testing

Figure 10: Measuring the final gap with product

validation

In addition to acceptance testing which validates the
product from the user’s point of view, operational testing is
sometimes performed to validate the product in its
operational environment.

Operational testing – testing conducted to evaluate a
system or component in its operational environment
(Glo08).

It is a widely held belief that reviews are inherently a
verification technique. However, this is not the case. For
example, it is sometimes appropriate to use a walk-through
as a technique for validating a simple enhancement to a
product or a defect repair.

Another use of reviews as a validation technique is to
conduct a post implementation review after a product has
been in operation for some time. A post implementation
review validates the product in its operational environment
and ensures that the product continues to meet the user’s
needs.

Testing

region
Testing

region

Unit testing

Integration testing

System testing
Acceptance testing

ProductProduct

Figure 11: The testing region

Arranging the different types of testing around the quality
triangle provides some insight into the somewhat limited
role of testing as a verification and validation technique.
As can be seen, the “testing region” encompasses only a
relatively small area of the triangle and thus has a limited
role in closing the gaps.

Closing the gaps with configuration
management
Configuration management is concerned with the correct
assembly of a product from its component parts. It is a
management practice designed to ensure that the correct
version of a component is used for each “build” of the
product and that changes to the product and its components
can be controlled, traced and tracked over time. [Ber97].

Configuration management can be used as a technique to
close the specification-product gap during the design and
construction phases of the life cycle. It achieves this by
formally identifying different versions of a product and its
components and by controlling changes to the product, its
specification, its components and other interim work
products.

A product may be assembled incorrectly as a result of
selecting the wrong components or the wrong version of a
component. Different versions of a product and its
components will exist at different points in time. In
addition, variants of a product may be created to meet the
needs of different users and operational environments.

Identification
Version control

Change control

Need Spec

Product

Need Spec

Product

Requirements
management

Figure 12: Closing the gaps with configuration
management

A product that is assembled from the incorrect components
is unlikely to conform to its specification. This effectively
leads to an increase in the magnitude of the specification-
product gap. Positive identification of components coupled
with version control helps to ensure the correct assembly of
a product and will close the gap between the specification
and the product.

An
tic

ipa
te
d
ga
p

Scope change

Actua
l ga

p

Spec
Figure 13: The effect of change on the specification-

product gap

Phil Robinson The Triangular Life Cycle Model

- 8 -

Change can have a subtle effect on the magnitude of the
specification-product gap. Changing stakeholder needs
after development has commenced will increase the
magnitude of the specification-product gap but the increase
may not be reflected in the specification. This means that
the developers are often not aware of the increased gap.

The increased gap is often not discovered until acceptance
testing performed during the Deployment stage. The
solution to this problem is to ensure that the understanding
of stakeholder needs continues to be updated during the
Design and Construction stages of the life cycle.

Changes to requirements together with problems and
inconsistencies identified during the design and
construction stages will nearly always require changes to
other interim work products. These changes together with
the resulting changes to the product and its components
need to be formally controlled. The ability to trace
requirements to interim work products, allows the impact of
proposed changes to be analysed before they are approved
and implemented.

Closing the gaps with defect prevention
Activities performed during the Requirements, Design and
Construction stages of the life cycle “inject” defects into a
product, its specification, its components and other interim
work products. The role of verification and validation is to
identify these defects so that they can be removed.

In addition to removing individual defects, it is possible to
identify “classes” of defects by applying error analysis –
this involves collecting and analysing data for a large
number of individual defects [Pen93]. Bug taxonomies
provide a good example of some generic classes of defect
[Bei90].

Need Spec

Product

Need Spec

Product

Defect
injection
Defect
injection

Defect
removal
Defect
removal

Corrective
action

Error
analysis

Figure 14: Closing the gaps with defect prevention

Defect classes can be used to predict the types of defect that
will most likely be injected in the future and to take some
form of corrective action to prevent this from occurring.
Determining the underlying or “root” cause of a class of
defects often helps to identify the most appropriate
corrective action. Classes of defect can also be used to
improve verification and validation activities by providing
guidance on the most likely types of defect that will be
found during testing and reviews.

Corrective actions might involve creating, revising or
enforcing the use of standards, policies, procedures,
checklists and other guidelines. In other cases it might
involve changing activities performed, providing training
for staff, reallocation of people or resources, or improving
the effectiveness of life cycle audit activities.

Defect prevention can be used as a technique to close the
specification-product gap during the Requirements, Design
and Construction phases of the life cycle. It achieves this
by preventing the magnitude of the gap from growing as a
result of defects.

Closing the gaps with rework
Removing defects from a product, its specification, its
components and other interim work products will normally
require working backwards through life cycle to correct
earlier errors and mistakes. Many activities that have
already been performed will need to be performed again
and many components and work products that have
previously been completed will need to be modified.

The need to backtrack and revisit earlier life cycle activities
is often referred to as “rework”. Rework leads to additional
development costs because activities are performed more
than once. However, rework adds no value to the product
as it simply corrects earlier errors.

Need Spec

Product

Rework Rework

Figure 15: Closing the gaps with rework

Rework is an error prone activity that often injects many
new defects into a product. These new defects will lead to
more rework in order to remove them. The result is that
rework frequently becomes a vicious circle that leads to
large schedule and budget overruns.

Rework is probably the technique most widely used to close
the need-specification gap during the Requirements phase
of the life cycle and the specification-product gap during
the Design and Construction phases of the life cycle. This
is in spite of the fact that it is the least effective technique.

Closing the gaps with iteration
Iteration involves performing life cycle activities more than
once. Although this may sound similar to rework, iteration
is quite different. Rework consists of unplanned activities
required to remove defects.

Phil Robinson The Triangular Life Cycle Model

- 9 -

Iteration on the other hand, involves the successive
refinement of a product, its specification, its components or
other interim work products by repeating the stages of the
life cycle.

It is important that each iteration is a planned with clear
objectives, outcomes and deliverables in mind [Boe88].
The traditional waterfall life cycle milestones based on the
approval and hand off of deliverables are not suitable for
planning iterative projects. For this reason, many iterative
life cycles are based on the following generic set off
milestones (Boe99):

• Definition of the “Life Cycle Objectives” (LCO)
in the form of the most important requirements
together with their priority.

• Definition of the “Life Cycle Architecture” (LCA)
in the form of an executable architecture that will
support the most important requirements.

• Delivery of an “Initial Operational Capability”
(IOC) that will allow the users to perform the first
acceptance test.

Iteration also provides an opportunity for additional
validation in the form of an iteration review. The findings
of the iteration review serve as a major input to the
planning of the next iteration.

Iteration
review

Iteration plan
Need Spec

Product

Refinement Refinement

LCO
LCA

IOC

Figure 16: Closing the gaps with iteration

Iteration can be used as a technique to close all three gaps.
It achieves this by repeating the life cycle stages thus
providing multiple opportunities to close the gaps.

Closing the gaps with process
improvement
The most common objective of process improvement is to
improve the quality of life cycle activities and their outputs.
It can also be used to achieve other objectives such as
improving productivity or reducing costs. However, cost
reductions are often only achieved as a by-product of
improving quality. The reason for this is the manner in
which quality contributes to the overall cost of a product
[AS 2561].

Quality related costs have two components:

• the cost of poor quality primarily resulting from
rework but may also including the cost of product
support, product updates, complaint handling,
concessions to disgruntled customers and loss of
sales; and

• the cost of performing activities intended to close
the gaps such as verification, validation,
configuration management, defect prevention and
additional activities associated with iteration.

The cost of poor quality is represented on the triangle by
the product-need gap while the cost of closing the gaps is
represented by the need-specification and specification-
product gaps.

Spending money on closing the need-specification and
specification-product gaps will result in a reduction in the
magnitude of the product-need gap and a corresponding
improvement in quality. If the increased spending on
activities designed to close the gaps leads to a equal
reduction in the cost of poor quality, then the improvement
in quality has been achieved at no additional cost [Cro79].

Need Spec

Product

Need Spec

Product

Cost of
poor quality

Cost of
poor quality

Cost of
closing
the gaps

Cost of
closing
the gaps

total quality budget =
cost of poor quality +
cost of closing the gaps

Figure 17: The cost of quality

Because the improvement of software development
processes normally starts from quite a poor level of quality,
it is not difficult to achieve a reduction in the cost of poor
quality that is greater than the amount that has been
invested in closing the gaps.

C
os

t

Quality

Cost of closing the gaps
Cost of closing the gaps

Quality
Budget

Cost of poor quality
Cost of poor quality

Figure 18: Plotting the total cost of quality

Phil Robinson The Triangular Life Cycle Model

- 10 -

The right hand side of the graph shown in Figure 18
represents the traditional value view of quality (Gar84) that
is based on how much a customer is willing to pay for
quality. However, the left hand side of the graph represents
the counter intuitive proposition that it is necessary to spend
less in order to achieve better quality!

Construction
D

es
ig

n

Requirements

Figure 19: Closing the gaps with process improvement

Process improvement can be used as a technique to close
the need-specification gap during the requirements phase of
the life cycle and the specification-product gap during the
design and construction phases of the life cycle.

Investment
Return

C
os

t

Quality

Cost of closing the gaps

Cost of closing the gaps Cost of poor quality

Cost of poor quality

Quality
Budget

Figure 20: Investing in process improvement

However, there will always be a time delay between
spending more on closing the gaps and a corresponding
reduction in the cost of poor quality. This means that
process improvement should be viewed as an investment
proposition that will provide a return on the investment
(ROI) at some point in the future.

“Triangular” maturity models
The shape of a triangle is determined by the relative length
of its sides. It is interesting to compare the shapes of
triangles that reflect different project scenarios.

The ideal triangle has a small need-specification gap and a
small specification-product gap. The result is a product that
meets most of the user's needs as represented by the small
product-need gap.

In fact, a triangle representing a perfect product that met all
of the user's needs would not be a triangle! This is because

as the gaps shrink, the triangle becomes a single point with
all three views of quality perfectly aligned.

The Communicate triangle represents a situation in which
the need-specification gap is large but is corrected by the
developers during the Design and Construction stages of
the life cycle. This is usually achieved by communicating
frequently with the stakeholders - hence the name of the
triangle. This triangle can deliver products that meet the
stakeholder's needs but will normally involve more rework
than the ideal triangle.

Communicate
Communicate M

is
un

de
rs

ta
nd

M
is
un

de
rs

ta
nd

IdealIdeal

Outsou
rce

Outsou
rce

Ho
pe
les

s

Ho
pe
les

s

Figure 21: Triangular maturity models

The Outsource triangle has a large needs-specification gap
but a small specification-product gap. The result is a
product that fails to meet many of the user’s needs. This
triangle often occurs when the Design and Construction
stages of the life cycle are outsourced to a third party who
delivers a product that conforms closely to its specification
but the specification does not refect the true stakeholder's
needs.

The Misunderstand triangle has a small needs-specification
gap but a large specification-product gap. The result is a
product that fails to meet a many of the user's needs. This
triangle can occur for two reasons:

• the specification is very complex and difficult for
the developers to understand; or

• the developers do not follow the specification.

The Hopeless triangle is, well simply hopeless! Large
need-specification and specification-product gaps result in a
product that manages to satisfy very few of the user’s
needs.

A question of balance
Project management best practices such as those described
by PMBOK are intended to have relevance to a wide
variety of projects undertaken in many different industries.
By aiming for universal relevance these practices often
miss some of the subtleties of software development.

The TLCM is intended to fill this gap. However, is not
intended as a alternative to project management practices
but rather a way to supplement and enhance them with a
software engineering perspective. The practices described
in PMBOK can and should be applied to projects based on
TLCM. It is hoped that the TLCM’s priorities of quality,
scope, cost and time can provide a useful counterweight to
the more dominant time, cost, scope and quality priorities
of project management.

Phil Robinson The Triangular Life Cycle Model

- 11 -

Sc
op

e

Work Product

ActivitiesQ
ua

lit
y Ti

m
e

C
os

t

Quality
Management
Priorities

Quality
Management
Priorities

Project
Management
Priorities

Project
Management
Priorities

Figure 22: Balancing quality and project management

priorities

[Lap08] Laplante, P. A., Neill, Colin J., “The Demise of the
Waterfall Model and Other Urban Myths”, Game
Development, Vol 1, No 10, Feb 2004.

[Roy70] Royce, W., "Managing the Development of Large
Software Systems", Proceedings of IEEE WESCON, 1970.

[Wik08] Urban Myth,
http://en.wikipedia.org/wiki/Urban_myth. Retrieved on 31st
Jul 2008.

[PMBOK00] A Guide to the Project Management Body of
Knowledge (PMBOK), The Project Management Institute,
2000 (also available as IEEE Std 1490-2003).

[Sta95] The Standish Group Report: Chaos.
http://net.educause.edu/ir/library/pdf/NCP08083B.pdf,
Retrieved 7th August, 2008.

[Yor97] Yourdon, E., Death March: The Complete
Software Developer's Guide to Surviving "Mission
Impossible" Projects, Prentice Hall, 1997.

[Pow04] Powell, Richard R., Wabi Sabi Simple, Adams
Media, 2004.

[AS 2561] AS 2561-1982: Guide to the determination and
use of quality costs, Standards Australia, 1982

[Gar84] Garviv, D., "What Does 'Product Quality' Really
Mean?", Sloan Management Review, Fall 1984, pp25-45.

[Geo04] George, Michael L., et al. The Lean Six Sigma
Pocket Toolbook: A Quick Reference Guide to 100 Tools
for Improving Quality and Speed, McGraw-Hill, 2004.

[Boe99] Boehm, B. 1999. “Escaping the software tar pit:
model clashes and how to avoid them”, SIGSOFT Software
Engineering Notes 24, Jan. 1999.

[Boe79] Boehm, B., “Guidelines for Verifying and
Validating Software Requirements and Design
Specifications”, IEEE Software Volume 1, Issue 1, 1984.

[Glo08] Glossary of Software Testing Terms,
http://www.testingstandards.co.uk/glossary.htm, Retrieved
on 1st Aug 2008

[IEEE1028] IEEE Std 1028-1997 IEEE Standard for
Software Reviews.

[UML07] OMG Unified Modeling Language (OMG UML),
Superstructure, V2.1.2, Object management Group (OMG),
2007.

[Ber97] Bersoff, E. H., "Elements of Software,
Configuration Management," in Software Engineering,
M.Dorfman and R. H. Thayer, Eds., IEEE Computer
Society Press, 1997.

[Pen93] Peng, W. W. and Wallace, D. R., Software Error
Analysis, NIST Special Publication 500-209, 1993.

[Bei90] Beizer, B., Software Testing Techniques, Van
Nostrand Reinhold, New York, 1990.

[Boe88] Boehm, B. “A spiral model of software
development and enhancement”, SIGSOFT Software
Engineering, 1986.

[Cro79] Cosby, P., Quality is Free, New American
Library, 1979.

